IDS-NF Accelerator Systems Overview

J. Scott Berg Brookhaven National Laboratory EUROnu Annual Meeting 26 March 2009

Neutrino Factory Overview Basic Goals

- Produce neutrinos by muon decay
- Accelerate muons to high energy (≈ 25 GeV)
 - Concentrated beam
 - Higher neutrino cross-section
- Circulate in storage ring with long straight pointed at angle down toward detector

Neutrino Factory Overview

Neutrino Factory Overview

- Proton driver, makes protons that hit
- Target, which produces pions then muons
- Front end: modify phase space for acceleration
- Acceleration, bring to high energy
- Storage ring, direct neutrino decays to detector

Neutrino Beam

- $\circ 10^{21}$ muon decays toward detector per 10^7 s
- 25 GeV muon beam
- \circ Muon angular divergence $0.1/\gamma$
- Two baselines: 3000–5000 km, 7000-8000 km

Proton Driver

- Protons hit target, produce pions, decay to muons
- Muons approximately proportional to proton driver power
- Three ways to get power
 - Repetition rate
 - □ Particles per bunch
 - Energy

Proton Driver Energy

- Proportionality to proton driver power imperfect
- Production per energy depends on energy
 - □ Hg: peak at 6–7 GeV
 - □ Rapid decline below 5 GeV, above 10 GeV
- Higher energy machine likely costs more
- High repetition rate harder at high energy
- Early space charge harder at low energy
- Short bunches (1–3 ns!) harder at low energy

Proton Driver Production vs. Energy (X. Ding)

Proton Driver Other Considerations

- Repetition rate sufficient to keep space charge reasonable
 - High repetition rate increases costs for muon machine
- Multiple bunches per repetition
 - Short bunches more realistic

Proton Driver Bunch Structure at Target

Proton Driver IDS Baseline

- 4 MW power (needed count)
- 50 Hz repetition rate (space charge)
- ○5–15 GeV energy (peak production per power)
- 1–3 ns RMS bunch length (production drops for longer bunches)
- 3 bunches per repetition (space charge)

Proton Driver IDS Goals

- Convince ourselves there is a workable design meeting all requirements
- Muon production is number that matters

- Protons hit target, make pions, decay to muons
- Production different for different materials
 - Prefer heavy metals
- Target damage from proton beam
 - □ Liquid jet

Target Production vs. Target A

Target Liquid Jet

- Bunches destroy target
- High velocity to replace target
- Multiple bunches per cycle
 - All must arrive before target breaks up

Target IDS Baseline

- Liquid mercury jet (avoid damage)
- 20 m/s velocity (replace used target in time)
- \circ Bunches arrive within 40 μ s (based on older data)

Target Work Plan

- Analyze MERIT data to determine permitted bunch structure
 - \neg If multiple bunches, prefer that they arrive over more than 40 μ s; see how long MERIT permits
- Engineering of target infrastructure

Front End

- Produced muons have
 - Large energy spread
 - Large transverse emittance
- Cannot accelerate this beam
- Reduce energy spread
- Reduce transverse emittance (less critical: throw away beam)

Front End Muon Energy Spectrum (X. Ding)

Front End Functions

- Allow pions to decay to muons
- Reduce energy spread
- Bunch beam suitably for acceleration
- Reduce transverse emittance

Front End Bunching/Phase Rotation

- "Neuffer" phase rotation
- \circ High-frequency (\approx 200 MHz) RF for phase rotation
- Drift: energy correlated with arrival time
- RF creates bunches
- Phases so high energy bunches lose energy, low energy bunches gain energy
- Adjust frequency along length to maintain this

Front End Neuffer Phase Rotation

Front End Bunch Length

- Longitudinal phase space area preserved
- Longer proton bunch: larger muon phase space area
 - Inherent time spread from pion decay
- More time spread, longer phase rotation to reach energy spread: decays
- Lose capture efficiency above 1 ns rms proton bunch length

Front End Bunch Length

Front End Ionization Cooling

- Transverse emittance too large for acceleration and storage ring
- Reduce transverse emittance: ionization cooling
- Ionization cooling expensive: use only small amount

Front End RF and Magnetic Fields

- Neuffer phase rotation and ionization cooling
 - Compact solenoid-based lattice cells
 - Large magnetic fields in RF cavities
- Cooling performance proportional to RF gradient
- Achievable RF gradient reduced in magnetic fields

Front End Lattice Cell

Front End Gradient vs. B (Moretti)

Front End IDS Baseline

- Based on "Study IIa" (APS study)
- Taper in 12 m to 1.75 T, then 100 m decay
- 100 m Neuffer bunching/phase rotation
- \circ 80 m cooling at 220 MeV/c
 - □201.25 MHz 15 MV/m RF
 - □ 2.8 T magnetic field
 - □ Final emittance: 7.4 mm normalized
 - □ LiH absorbers

Front End IDS Task List

- Evaluate experimental data for relationship between magnet fields and achievable RF gradient
- Re-design front end to meet these requirements
 - Experimental program won't be finished
 - Base on best estimates

Acceleration

- Accelerate to 25 GeV
- Maintain emittances
- Keep costs low
 - Efficiency: multiple passes through cavities
- Multiple stages: optimize efficiency
 - Linac
 - Two recirculating accelerators
 - □ FFAG

Acceleration Scenario

Acceleration Stage Choices

- Linac: only one pass, works all energies
- RLA: multiple passes through RF
 - Switchyard limits passes: 4 or so
 - Problems at very low energy
- FFAG: avoid switchyard
 - □ No switchyard: 8–16 passes
 - Inefficient at low energy
 - Induces longitudinal distortion

Acceleration IDS Baseline

- ○201.25 MHz 17 MV/m superconducting RF
- Linac to 0.9 GeV
- Dogbone RLAs to 3.6 GeV and 12.6 GeV
- FFAG to 25 GeV
- System normalized acceptance: 30 mm transverse, 150 mm longitudinal

Acceleration Challenges

- FFAG: injection and extraction
 - □ Short drifts
 - Needed for efficiency
 - Must keep symmetry
 - Kickers must be strong, large aperture, fast
- RLA: switchyard, beam crossings
- Must top off RF between bunch trains
 - \neg Prefer 200 μ s for trains, not 40

Acceleration IDS Work Plan

- Complete designs of RLA and FFAG
- Design switchyard and beam crossings for RLA
- Find realistic injection/extraction scenario for FFAG
- Deal with inability to top-up RF if necessary
- Get costs to determine cost advantage (if any) of FFAG

Storage Ring Design and Issues

- Triangle or bowtie shape can improve efficiency over racetrack
- Racetrack more versatile
 - Arbitrary direction choice
 - Can run both signs in one
 - Bowtie: preserves polarization (bad if unknown)
- Depth creates geological problems

Storage Ring Geometry

Low Energy Neutrino Factory

- Consider accelerating only to 4 GeV
- Reduced storage ring depth
 - Lower energy, shorter circumference
 - Problem for multiple bunch trains
 - Shorter baseline, smaller angle
- Must answer question of physics reach
- Not too much extra work for accelerator end

Storage Ring IDS Baseline

- Two racetracks to two baselines
- 25 GeV muon beam
- \circ 0.1/ γ angular divergence
- Each holds three bunch trains, both signs
- 100 ns between trains
- 1600 m circumference

Storage Ring Work Items

- Work out design details
 - □ Try to reduce circumference
- Injection/extraction
- Evaluate whether RF needed
- Find beam distribution for production

Overall System IDS Work Items

- Get cost estimate of entire system
- Track through entire system
- Identify R&D items
- Timeline
 - Preliminary report by 2010
 - Have information for engineering
 - □ Final report by 2012

